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Utilizing ~100°C 
power plant waste 
heat to reduce 
dry-cooling load

Low cost system, 
high COP

Reduction in dry-
air heat exchanger 
size

250 kWth
demonstration 
early 2017

Bandhauer and Garland, 2016
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Fundamental Thermodynamic Considerations

Overview of Mechanical System Technology Options

Challenges for WHR Commercialization

Potential “ARPA-e Hard” Challenges for Mechanical Systems
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CAT 3516B Engine: 
1.6 MWe

1.6 MWth exhaust 
(517°C to 15°C, ~3 kg/s)
1.2 MWth coolant/other

Saturn 20PG Gas Turbine: 
1.2 MWe

3.3 kWth exhaust 
(504°C to 15°C, 6.5 kg/s)

Higher temperature heat in exhaust gases, 
must be cooled to extract heat

http://www.cat.com/ https://mysolar.cat.com/en_US.html
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hCarnot = 65%

h = 44%

As heat is removed, “reservoir” temperature is reduced –
even infinite reversible engines below inlet Carnot limit

Ibrahim and Klein, 1996

Multiple Carnot Cycles
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Exhaust gases: large A required for cycle “reservoir” 
to approach waste heat temperature
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NTU increases, effectiveness increases

Larger UA: more heat transfer, but diminishing rate of return

Extracting more heat can cost $$$

 p exhaust
NTU = UA / mC  p exhaust

UA / mC

Incropera and Dewitt, 1996

Parallel Flow Counter Flow
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Largest and most mature 
technology

Similar to steam cycle, but 
(typically) with carbon 
containing fluid

Examples: n-pentane, R245fa, 
ethanol, others (siloxanes)
• Low flammability fluids tend to 

decompose at low temperatures

• High flammability fluids tend to 
survive higher temperatures
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Majority of installed capacity >50 kW are geothermal installations

http://orc-world-map.org/analysis.html
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Large number of biomass and heat recovery installations in last 
decade, geothermal capacity still dominates

http://orc-world-map.org/analysis.html
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U.S. Department of Energy SuperTruck program
• Goal: Raise engine efficiency to 55%

• WHR used by majority of participants

http://social.cummins.com/
Delgado and Lutsey, 2014

3.6 BTE % pt. 
improvement
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Maloney and Robertson 
(1953) investigated 
absorption power cycle, 
similar performance to 
ORC

Kalina (1983) proposed 
similar cycle, adjusted 
concentration in 
ammonia-water system 
to match temperature 
glide of exhaust stream

 System efficiency 
higher, cost likely higher 
than ORC

Little and Garimella, 2011

Nagurny et al., 2013
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http://www.globalcement.com/

DOE Program
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Many years of development 
(DOE solar since 1980)

 Some early stage 
commercial develop 
ongoing for both cycles 
(including for ARPA-e 
GENSETS program – High T)

Compact systems at high 
efficiency at low grade 
waste heat a challenge due 
to gas recuperation

Costs, volume likely higher 
for low grade waste heat

EPRI, 2002

Barbieri et al., 2012
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Not typically used for 
low grade waste heat

High grade waste heat 
projects for ARPA-e 
GENSETS

DOE investing a 
significant amount for 
large scale (10 MW) 
sCO2 systems

 Likely to suffer same 
limitations as Stirling
due to large HEX 
volumes for gas 
recuperators

Moran and Shapiro, 2000





ARPA-E LOW GRADE WASTE HEAT WORKSHOP

GENSETS
(High T)

Low Grade WHR Target?
Size and Weight Targets Needed
(Need h and Temperature Target Too – perhaps sliding scale?)

Lemmens, 2016
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Cost of heat exchangers can be >50% of overall system

 Substantial reductions needed to achieve lower overall system cost

Example: Electratherm 35 kWe unit

Differential cost for air cooled unit: $2200/kWe (not all HX, probable 
volume discount, but still significant)

http://electratherm.com/
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Most of Normally Discharge Exhaust Heat 
is Rejected in HX ~3× Core Face Area of Radiator

50 kW

WHR System

TH,c

TC,c

10 kW
Power

Engine

150 kW
of Fuel

50 kW
Power

50 kW
ETD = 90-35 = 55°C

40 kW
ETD = 50-35 = 15°C
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High speed, high efficiency turbomachines
 Low speed engines
Need intermediate device to link performance of two system (battery, 

transmission, etc.)

Koeberlein, 2015
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ORCs are well established and mature technology, but cost reduction 
needed at low power outputs and low waste heat temperatures

Stirling, Brayton cycles: need to address volume, weight, and efficiency 
challenges at low temperature

Cost target <$500/kW (or lower), efficiency of ~50% of Carnot at   10 kW 
might be a good target for low grade waste heat 
(Need TEA for different markets!)

Potential “ARPA-e Hard” challenges
• Extreme cost reduction of heat exchangers

• Inert (and low cost) working fluids without adverse environmental impact, 
flammability, or other implementation issues (e.g., freezing)

• Transportation: improved gas heat exchange per unit volume
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